This Demonstration shows that classical, event-based processes that satisfy Einstein's criterion of local causality 4 can provide an alternative interpretation of results conventionally attributed to quantum effects. In the simulation, the photons are regarded as messengers that travel from the source to a detector. LINC2 (ACS): is a low cost, user friendly linear circuit simulator for microwave components. This will do the basic, but reasonably accurate modelling for microwave components, such as amplifiers, filters, attenuators, oscillators, amplifiers. The modelling is based on the S-parameters of active and passive devices, substrates, microwave. Download cst microwave studio for free. Photo & Graphics tools downloads - CST STUDIO SUITE by CST Computer Simulation Technology AG and many more programs are.
The following table lists software packages with their own article on Wikipedia that are nominal EM (electromagnetic) simulators;
Cst Microwave Studio Alternatives For Mac 2019
Name | License | Windows | Linux | 3D | GUI | Convergence detector | Mesher | Algorithm | Area of application |
---|---|---|---|---|---|---|---|---|---|
NEC | open source | Yes | Yes | Yes | In some distributions | Yes | manual | MoM | Antenna modeling, especially in Amateur Radio. Widely used as the basis for many GUI-based programs on many platforms (including popular distributions such as 4nec2 and EZnec on Windows, xnec2c on Linux, and cocoaNEC for Mac OS X). Version 2 is open source, but Versions 3 and 4 are commercially licensed. |
Momentum | commercial | Yes | Yes | Partial | Yes | Yes | equidistant | MoM | For passive planar elements development, integrated into Keysight EEsofAdvanced Design System. |
HFSS | commercial | Yes | Yes | Yes | Yes | Yes | Automatic adaptive | FEMFDTD PO Hybrid FEBI MoM Eigen Mode | For antenna/filter/IC packages, Radome,RFIC,LTCC,MMIC,Antenna Placement,Wave guides, EMI,FSS,Metamaterial,Composite Material, RCS-Mono and Bi development. |
XFdtd | commercial | Yes | Yes | Yes | Yes | Yes | Automatic Project Optimized | FDTD | RF and microwave antennas, components, and systems, including mobile devices. MRI coils, radar, waveguides, SAR validation. |
AWR Axiem | commercial | Yes | Yes | Yes | Yes | Yes | Automatic, Hybrid | MoM | PCBs, Multi-Layer PCBs, LTCC, HTCC, On-Chip Passives, Printed Antennas. Integrated into Microwave Office |
AWR Analyst | commercial | Yes | Yes | Yes | Yes | Yes | Automatic and Adaptive | FEM | 3D structurers(including 3D Antennas), Waveguides, 3D filters, PCBs, Multi-Layer PCBs, LTCC, HTCC, On-Chip Passives, Printed Antennas. Integrated into Microwave Office |
JCMsuite | commercial | Yes | Yes | Yes | Yes | Yes | Automatic, error-controlled | FEM | Nano- and micro-photonic applications (light scattering,[1] waveguide modes,[2] optical resonances[3]). |
COMSOL Multiphysics | commercial | Yes | Yes | Yes | Yes | Yes | Automatic | FEM, Boundary element method, Ray Tracing | General Purpose |
FEKO | commercial | Yes | Yes | Yes | Yes | Yes | Automatic or manual; adaptive | For antenna analysis, antenna placement, windscreen antennas, microstrip circuits, waveguide structures, radomes, EMI, cable coupling, FSS, metamaterials, periodic structures, RFID | |
Elmer FEM | open source (GPL) | Yes | Yes | Yes | Yes | Yes | manual, or can import other mesh formats | FEM | General Purpose, includes 2D and 3D magnetics solvers, both static and harmonic. 3D solver is based on the Whitney AV formulation of Maxwell's equations. |
References[edit]
- ^Hoffmann, J.; et al. (2009). Bosse, Harald; Bodermann, Bernd; Silver, Richard M (eds.). 'Comparison of electromagnetic field solvers for the 3D analysis of plasmonic nano antennas'. Proc. SPIE. Modeling Aspects in Optical Metrology II. 7390: 73900J. arXiv:0907.3570. Bibcode:2009SPIE.7390E..0JH. doi:10.1117/12.828036. S2CID54741011.
- ^Wong, G. K. L.; et al. (2012). 'Excitation of Orbital Angular Momentum Resonances in Helically Twisted Photonic Crystal Fiber'. Science. 337 (6093): 446–449. Bibcode:2012Sci...337..446W. doi:10.1126/science.1223824. PMID22837523. S2CID206542221.
- ^Maes, B.; et al. (2013). 'Simulations of high-Q optical nanocavities with a gradual 1D bandgap'. Opt. Express. 21 (6): 6794–806. Bibcode:2013OExpr..21.6794M. doi:10.1364/OE.21.006794. hdl:1854/LU-4243856. PMID23546062.